Classes
Overview
The 4D language supports the concept of classes. In a programming language, using a class allows you to define an object behaviour with associated properties and functions.
Once a user class is defined, you can instantiate objects of this class anywhere in your code. Each object is an instance of its class. A class can extend
another class, and then inherits from its functions.
The class model in 4D is similar to classes in JavaScript, and based on a chain of prototypes.
For example, you could create a Person
class with the following definition:
//Class: Person.4dm
Class constructor($firstname : Text; $lastname : Text)
This.firstName:=$firstname
This.lastName:=$lastname
Function sayHello()->$welcome : Text
$welcome:="Hello "+This.firstName+" "+This.lastName
In a method, creating a "Person":
var $person : cs.Person //object of Person class
var $hello : Text
$person:=cs.Person.new("John";"Doe")
// $person:{firstName: "John"; lastName: "Doe" }
$hello:=$person.sayHello() //"Hello John Doe"
Managing classes
Class definition
A user class in 4D is defined by a specific method file (.4dm), stored in the /Project/Sources/Classes/
folder. The name of the file is the class name.
When naming classes, you should keep in mind the following rules:
- A class name must be compliant with property naming rules.
- Class names are case sensitive.
- Giving the same name to a class and a database table is not recommended, in order to prevent any conflict.
For example, if you want to define a class named "Polygon", you need to create the following file:
- Project folder
- Project
- Sources
- Classes
- Polygon.4dm
- Classes
- Sources
- Project
Deleting a class
To delete an existing class, you can:
- on your disk, remove the .4dm class file from the "Classes" folder,
- in the 4D Explorer, select the class and click or choose Move to Trash from the contextual menu.
Using 4D interface
Class files are automatically stored at the appropriate location when created through the 4D interface, either via the File menu or the Explorer.
File menu and toolbar
You can create a new class file for the project by selecting New > Class... in the 4D Developer File menu or from the toolbar.
You can also use the Ctrl+Shift+Alt+k shortcut.
Explorer
In the Methods page of the Explorer, classes are grouped in the Classes category.
To create a new class, you can:
- select the Classes category and click on the button.
- select New Class... from the action menu at the bottom of the Explorer window, or from the contexual menu of the Classes group.
- select New > Class... from the contexual menu of the Explorer's Home page.
Class code support
In the various 4D windows (code editor, compiler, debugger, runtime explorer), class code is basically handled like a project method with some specificities:
- In the code editor:
- a class cannot be run
- a class function is a code block
- Goto definition on an object member searches for class Function declarations; for example, "$o.f()" will find "Function f".
- Search references on class function declaration searches for the function used as object member; for example, "Function f" will find "$o.f()".
- In the Runtime explorer and Debugger, class functions are displayed with the
\<ClassName>
constructor or\<ClassName>.\<FunctionName>
format.
Class stores
Available classes are accessible from their class stores. Two class stores are available:
cs
for user class store4D
for built-in class store
cs
cs -> classStore
Parameter | Type | Description | |
---|---|---|---|
classStore | object | <- | User class store for the project or component |
The cs
command returns the user class store for the current project or component. It returns all user classes defined in the opened project or component. By default, only project ORDA classes are available.
Example
You want to create a new instance of an object of myClass
:
$instance:=cs.myClass.new()
4D
4D -> classStore
Parameter | Type | Description | |
---|---|---|---|
classStore | object | <- | 4D class store |
The 4D
command returns the class store for available built-in 4D classes. It provides access to specific APIs such as CryptoKey.
Example
You want to create a new key in the CryptoKey
class:
$key:=4D.CryptoKey.new(New object("type";"ECDSA";"curve";"prime256v1"))
Class object
When a class is defined in the project, it is loaded in the 4D language environment. A class is an object itself, of "Class" class. A class object has the following properties and function:
name
stringsuperclass
object (null if none)new()
function, allowing to instantiate class objects.
In addition, a class object can reference a constructor
object (optional).
A class object is a shared object and can therefore be accessed from different 4D processes simultaneously.
Inheritance
If a class inherits from another class (i.e. the Class extends keyword is used in its definition), the parent class is its superclass
.
When 4D does not find a function or a property in a class, it searches it in its superclass
; if not found, 4D continues searching in the superclass of the superclass, and so on until there is no more superclass (all objects inherit from the "Object" superclass).
Class keywords
Specific 4D keywords can be used in class definitions:
Function <Name>
to define class functions of the objects.Class constructor
to define the properties of the objects.Class extends <ClassName>
to define inheritance.
Function
Syntax
Function <name>({$parameterName : type; ...}){->$parameterName : type}
// code
There is no ending keyword for function code. The 4D language automatically detects the end of a function's code by the next Function
keyword or the end of the class file.
Class functions are specific properties of the class. They are objects of the 4D.Function class.
In the class definition file, function declarations use the Function
keyword, and the name of the function. The function name must be compliant with property naming rules.
Tip: Starting the function name with an underscore character ("_") will exclude the function from the autocompletion features in the 4D code editor. For example, if you declare
Function _myPrivateFunction
inMyClass
, it will not be proposed in the code editor when you type in"cs.MyClass. "
.
Immediately following the function name, parameters for the function can be declared with an assigned name and data type, including the return parameter (optional). For example:
Function computeArea($width : Integer; $height : Integer)->$area : Integer
Within a class function, the This
command is used as the object instance. For example:
Function setFullname($firstname : Text; $lastname : Text)
This.firstName:=$firstname
This.lastName:=$lastname
Function getFullname()->$fullname : Text
$fullname:=This.firstName+" "+Uppercase(This.lastName)
For a class function, the Current method name
command returns: <ClassName>.<FunctionName>
, for example "MyClass.myMethod".
In the application code, class functions are called as member methods of the object instance and can receive parameters if any. The following syntaxes are supported:
- use of the
()
operator. For example,myObject.methodName("hello")
- use of a "4D.Function" class member method:
Thread-safety warning: If a class function is not thread-safe and called by a method with the "Can be run in preemptive process" attribute:
- the compiler does not generate any error (which is different compared to regular methods),
- an error is thrown by 4D only at runtime.
Parameters
Function parameters are declared using the parameter name and the parameter type, separated by a colon. The parameter name must be compliant with property naming rules. Multiple parameters (and types) are separated by semicolons (;).
Function add($x; $y : Variant; $z : Integer; $xy : Object)
If the type is not stated, the parameter will be defined as
Variant
.
You declare the return parameter (optional) by adding an arrow (->
) and the return parameter definition after the input parameter(s) list. For example:
Function add($x : Variant; $y : Integer)->$result : Integer
You can also declare the return parameter only by adding : type
, in which case it will automatically be available through $0. For example:
Function add($x : Variant; $y : Integer): Integer
$0:=$x+$y
The classic 4D syntax for method parameters can be used to declare class function parameters. Both syntaxes can be mixed. For example:
Function add($x : Integer)
var $2; $value : Integer
var $0 : Text
$value:=$x+$2
$0:=String($value)
Example
// Class: Rectangle
Class constructor($width : Integer; $height : Integer)
This.name:="Rectangle"
This.height:=$height
This.width:=$width
// Function definition
Function getArea()->$result : Integer
$result:=(This.height)*(This.width)
// In a project method
var $rect : cs.Rectangle
var $area : Real
$rect:=cs.Rectangle.new(50;100)
$area:=$rect.getArea() //5000
Class constructor
Syntax
// Class: MyClass
Class Constructor({$parameterName : type; ...})
// code
There is no ending keyword for class constructor function code. The 4D language automatically detects the end of a function's code by the next Function
keyword or the end of the class file.
A class constructor function, which can accept parameters, can be used to define a user class.
In that case, when you call the new()
function, the class constructor is called with the parameters optionally passed to the new()
function.
For a class constructor function, the Current method name
command returns: <ClassName>:constructor
, for example "MyClass:constructor".
Example
// Class: MyClass
// Class constructor of MyClass
Class Constructor ($name : Text)
This.name:=$name
// In a project method
// You can instantiate an object
var $o : cs.MyClass
$o:=cs.MyClass.new("HelloWorld")
// $o = {"name":"HelloWorld"}
Class extends \<ClassName>
Syntax
// Class: ChildClass
Class extends <ParentClass>
The Class extends
keyword is used in class declaration to create a user class which is a child of another user class. The child class inherits all functions of the parent class.
Class extension must respect the following rules:
- A user class cannot extend a built-in class (except 4D.Object and ORDA classes which are extended by default for user classes).
- A user class cannot extend a user class from another project or component.
- A user class cannot extend itself.
- It is not possible to extend classes in a circular way (i.e. "a" extends "b" that extends "a").
Breaking such a rule is not detected by the code editor or the interpreter, only the compiler and check syntax
will throw an error in this case.
An extended class can call the constructor of its parent class using the Super
command.
Example
This example creates a class called Square
from a class called Polygon
.
//Class: Square
//path: Classes/Square.4dm
Class extends Polygon
Class constructor ($side : Integer)
// It calls the parent class's constructor with lengths
// provided for the Polygon's width and height
Super($side;$side)
// In derived classes, Super must be called before you
// can use 'This'
This.name:="Square"
Function getArea()
C_LONGINT($0)
$0:=This.height*This.width
Super
Syntax
Super {( param{;...;paramN} )} {-> Object}
Parameter | Type | Description | |
---|---|---|---|
param | mixed | -> | Parameter(s) to pass to the parent constructor |
Result | object | <- | Object's parent |
The Super
keyword allows calls to the superclass
, i.e. the parent class.
Super
serves two different purposes:
- Inside a constructor code,
Super
is a command that allows to call the constructor of the superclass. When used in a constructor, theSuper
command appears alone and must be used before theThis
keyword is used.
- If all class constructors in the inheritance tree are not properly called, error -10748 is generated. It's 4D developer to make sure calls are valid.
- If the
This
command is called on an object whose superclasses have not been constructed, error -10743 is generated. - If
Super
is called out of an object scope, or on an object whose superclass constructor has already been called, error -10746 is generated.
// inside myClass constructor
var $text1; $text2 : Text
Super($text1) //calls superclass constructor with a text param
This.param:=$text2 // use second param
- Inside a class member function,
Super
designates the prototype of the superclass and allows to call a function of the superclass hierarchy.
Super.doSomething(42) //calls "doSomething" function
//declared in superclasses
Example 1
This example illustrates the use of Super
in a class constructor. The command is called to avoid duplicating the constructor parts that are common between Rectangle
and Square
classes.
// Class: Rectangle
Class constructor($width : Integer; $height : Integer)
This.name:="Rectangle"
This.height:=$height
This.width:=$width
Function sayName()
ALERT("Hi, I am a "+This.name+".")
// Function definition
Function getArea()
var $0 : Integer
$0:=(This.height)*(This.width)
//Class: Square
Class extends Rectangle
Class constructor ($side : Integer)
// It calls the parent class's constructor with lengths
// provided for the Rectangle's width and height
Super($side;$side)
// In derived classes, Super must be called before you
// can use 'This'
This.name:="Square"
Function getArea()
C_LONGINT($0)
$0:=This.height*This.width
Example 2
This example illustrates the use of Super
in a class member method. You created the Rectangle
class with a function:
//Class: Rectangle
Function nbSides()
var $0 : Text
$0:="I have 4 sides"
You also created the Square
class with a function calling the superclass function:
//Class: Square
Class extends Rectangle
Function description()
var $0 : Text
$0:=Super.nbSides()+" which are all equal"
Then you can write in a project method:
var $square : Object
var $message : Text
$square:=cs.Square.new()
$message:=$square.description() //I have 4 sides which are all equal
This
Syntax
This -> Object
Parameter | Type | Description | |
---|---|---|---|
Result | object | <- | Current object |
The This
keyword returns a reference to the currently processed object. In 4D, it can be used in different contexts.
In most cases, the value of This
is determined by how a function is called. It can't be set by assignment during execution, and it may be different each time the function is called.
When a formula is called as a member method of an object, its This
is set to the object the method is called on. For example:
$o:=New object("prop";42;"f";Formula(This.prop))
$val:=$o.f() //42
When a class constructor function is used (with the new()
function), its This
is bound to the new object being constructed.
//Class: ob
Class Constructor
// Create properties on This as
// desired by assigning to them
This.a:=42
// in a 4D method
$o:=cs.ob.new()
$val:=$o.a //42
When calling the superclass constructor in a constructor using the Super keyword, keep in mind that
This
must not be called before the superclass constructor, otherwise an error is generated. See this example.
In any cases, This
refers to the object the method was called on, as if the method were on the object.
//Class: ob
Function f()
$0:=This.a+This.b
Then you can write in a project method:
$o:=cs.ob.new()
$o.a:=5
$o.b:=3
$val:=$o.f() //8
In this example, the object assigned to the variable $o doesn't have its own f property, it inherits it from its class. Since f is called as a method of $o, its This
refers to $o.
Class commands
Several commands of the 4D language allows you to handle class features.
OB Class
OB Class ( object ) -> Object | Null
OB Class
returns the class of the object passed in parameter.
OB Instance of
OB Instance of ( object ; class ) -> Boolean
OB Instance of
returns true
if object
belongs to class
or to one of its inherited classes, and false
otherwise.